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Abstract 9 

 Most biomonitoring projects focus on single species groups at time scales either too short 10 

or too coarse to detect intra-annual oscillations in biodiversity. Using a multi-faceted approach, 11 

we compared diversity indices of larval macroinvertebrate families and fish species in a 12 

Midwestern stream during spring and fall of 2009-2013, and discovered contrasting patterns in � 13 

and � diversity between the seasons for the two taxa groups. Compared to spring, both � and � 14 

diversity were significantly higher during fall for macroinvertebrates; on the contrary, only � 15 

diversity differed between the seasons for fishes. For both taxa, we partitioned the overall � 16 

diversity to identify contributions of temporal and spatial � diversity on the observed 17 

differences. The observed patterns for macroinvertebrates were likely the result of season acting 18 

as environmental filter, but sampling effects were likely more important in driving fish diversity 19 

patterns. In light of widespread conservation and restoration efforts in the Midwestern streams, it 20 

seems prudent to study community composition frequently so that baseline alpha and beta 21 

diversity can be obtained for organisms at different taxonomic levels and during different 22 

seasons. 23 

Keywords: Alpha diversity; beta diversity; macroinvertebrates; fishes; seasonal differences; 24 

freshwater streams 25 

 26 

Introduction 27 

 Biodiversity loss or change have important effects on ecosystem functions and services 28 

(Cardinale et al., 2006; Worm et al., 2006) and on humanity as a whole (Cardinale et al., 2012), 29 

and thus, there is growing interest in understanding the patterns of biodiversity change at local as 30 

well as global scales. Globally, biodiversity change has been characterized by a loss in the 31 
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numbers and/or relative abundances of species in a community (i.e. α diversity), attributed 32 

mainly to anthropogenic pressures, climate change, large-scale habitat transformation, though 33 

such patterns do not seem to exist at local scales (Dornelas et al., 2014; Vellend et al., 2013). In 34 

addition, local communities have also undergone shifts in community composition due to 35 

processes such as homogenization, differentiation and local or global extinction (Magurran et al., 36 

2018; Rahel, 2002). Cumulatively, these structural changes have also substantially affected the 37 

ecosystem function and services (Frainer et al., 2017; Hillebrand et al., 2018; Spaak et al., 2017). 38 

Biodiversity loss and change has led to a renewed interest in the study of drivers and 39 

patterns of biodiversity in both terrestrial and aquatic systems at various temporal and spatial 40 

scales (e.g. Al-Shami et al., 2013; Anderson et al., 2011; Nekola & White, 1999). The drivers of 41 

such variations in community structure through space and time are likely taxa- and location-42 

specific, and might include both deterministic and stochastic processes (Korhonen, Soininen, & 43 

Hillebrand, 2010; Stegen et al., 2013). Influence of deterministic processes such as competition 44 

and environmental filtering leads to specific taxa exploiting specific spatial niche, and thus, to 45 

high spatial and temporal turnover with increasing habitat heterogeneity (Anderson et al., 2011; 46 

Stegen et al., 2013). Stochastic processes such as sampling and priority effects also affect 47 

observed biodiversity trends (Stegen et al., 2013). It is increasingly becoming clear that both 48 

deterministic and stochastic processes influence the diversity of communities, with the result that  49 

� and  � components of diversity are inherently linked. In addition, the temporal and spatial  � 50 

diversity are also related, though the relation may be context dependent (Stegen et al., 2013; 51 

Steiner & Leibold, 2004). 52 

Patterns and drivers of intra-annual variation in biodiversity is gaining increasing 53 

attention in the recent years (Bonada & Resh, 2013; Cook, Housley, Back, & King, 2018; 54 
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Tonkin, Bogan, Bonada, Rios-Touma, & Lytle, 2017), perhaps owing to the realization that 55 

intra-annual variability in diversity of aquatic communities is generally much higher than 56 

interannual variability (Korhonen et al., 2010), potentially contributing disproportionately to the 57 

overall biodiversity of the ecosystem. Seasonal variations in biodiversity patterns may arise from 58 

different processes for different taxa or trophic levels. For example, evolution has led different 59 

species of aquatic macroinvertebrates to mature at different times of a year such that these 60 

species are able to exploit different temporal niches corresponding to the seasonal differences in 61 

environmental conditions (Bonada & Resh, 2013; Tonkin et al., 2017; Wolda, 1988). Similarly, 62 

many species of freshwater fishes perform spawning migrations to headwaters or other streams 63 

of lower order during spring, thus occupying different spatial and temporal niches at different 64 

times of the year (Jonsson, 1991; Smith, 2002).  65 

Research on seasonal patterns of  � diversity in the freshwater ecosystems has mostly 66 

focused on macroinvertebrate communities (e.g. Costa & Melo, 2008; Finn, Khamis, & Milner, 67 

2013; Heino, Muotka, & Paavola, 2003). Few have studied differences in species turnover 68 

patterns among taxa at different trophic or taxonomic levels (Heino, Paavola, Virtanen, & 69 

Muotka, 2005; Lepori, Palm, Brännäs, & Malmqvist, 2005). This is problematic because 70 

different species or groups may respond differently to environmental factors and anthropogenic 71 

stressors. For example, Datry, Moya, Zubieta, & Oberdorff (2016) observed higher � diversity in 72 

intermittent streams compared to perennial streams for fishes, but such differences were not 73 

observed for macroinvertebrates. Furthermore, most studies focus on a temporal scale either too 74 

fine (weeks-months) or too coarse (repeated annual samples) to detect effects of season (Brown, 75 

2003; Mykrä, Heino, Oksanen, & Muotka, 2011). For assemblages of aquatic taxa with active 76 

dispersal stages, such approaches would hinder study of metacommunity structure (Hewitt, 77 
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Thrush, & Ellingsen, 2016; Wolda, 1988) and of intra-annual relationships between the 78 

assemblages and the environment (Heino et al., 2015). We studied the overall, temporal and 79 

spatial turnover of macroinvertebrate and fish communities in a Midwestern stream, and 80 

discovered that the patterns in taxa turnover are different for organisms at the two taxonomic 81 

levels. 82 

 83 

Methods 84 

Kickapoo Creek (Latitude 39°27', Longitude 88°13') is an approximately 15 km long, low 85 

gradient, third order Midwestern stream that drains into the Embarras River, Illinois. The 86 

drainage (area 262 km
2
) is mostly agricultural (63.6%) with grasslands (15.0%), forest (10.1%) 87 

and urban areas (10.9%) contributing high sediment loading and nitrate concentrations in the 88 

water (Keefer, 2004); the substrate is mostly shifting sand and gravel. Much of Kickapoo Creek 89 

displays low geomorphic stability with high rates of bank erosion; shallow channels; low canopy 90 

cover; high sediment loads from the adjacent agricultural fields and homogenous raceway 91 

habitats with a relatively uniform depth across the length of the reach (Pant, 2014). Four fixed 92 

sites selected for this study were 232 m (Site A), 254 m (Site B) and 192 m (Site C) and 183 m 93 

(Site D) in stream length (Figure 1). Water temperature, pH and dissolved oxygen concentration 94 

were recorded during every sampling period using a YSI-85 water quality meter. 95 

 Benthic macroinvertebrate assemblages were sampled during base flow twice every year 96 

(May and September) during 2010-2013 using Illinois Environmental Protection Agency’s 97 

multihabitat 20-jab method (IEPA, 2007). All major habitats within each site were sampled in 98 

approximate proportional representation within the site. Semi-quantitative samples were 99 

collected from each site using a rectangular dip-net (dimensions 0.5 m * 0.3 m) attached to a 100 
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long pole, by “jabbing” or “sweeping,” and stored in 75% ethanol. We subsampled ~300 random 101 

individuals from each sample to standardize metrics among sites and years (IEPA, 2007). 102 

Macroinvertebrates were identified to the family level because a large fraction of individuals 103 

could not be identified below this level. We assigned tolerance values to each individual based 104 

on Merritt, Cummins, & Berg (2008). 105 

We sampled fishes in all sites during fall (2009-2013) and spring (2010-2012) using an 106 

AC electrofishing seine following the stream sampling guidelines by Illinois Department of 107 

Natural Resources (IDNR, 2001). At each reach, we placed block nets (12 m * 1.2 m, 5 mm bar 108 

mesh) at the upstream and downstream ends to form a closed site. For electrofishing, we used an 109 

8 m electric seine with 12 copper electrodes spaced 0.75 m apart and powered by a 2000 watt 110 

AC generator. A six person crew made a single pass moving upstream through each reach to 111 

deplete the reach of all fishes. Following the electrofishing sample, downstream block nets were 112 

pulled, and all trapped fishes were collected. All fishes in the upstream blocking seine were 113 

released without enumeration. Fishes >100 mm in length were identified based on Smith (2002), 114 

measured and weighed in the field, and returned back to the water unharmed. All other fishes 115 

were euthanized using a lethal dose of MS-222, preserved in 10% formalin, and later processed 116 

in lab. Fishes were assigned to tolerance and feeding guilds following Poff & Allan (1995). 117 

We took a multifaceted approach to evaluating differences in  � and � diversity between 118 

fall and spring seasons. As measures of � diversity, we calculated six commonly used metrics 119 

related to composition, structure, and function to represent the macroinvertebrate assemblage. 120 

These indices included various indices of community composition (richness, % Chironomidae, 121 

exponentiated Shannon index and Pielou’s Evenness) and sensitive taxa (proportion of 122 

Ephemeroptera-Plecoptera-Trichoptera [EPT] taxa, Hilsenhoff’s Macroinvertebrate Biotic Index 123 
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[HBI,Hilsenhoff, 1987]). Sample-specific HBI was calculated as the sum of the tolerance values 124 

divided by the total number of individuals sampled at the site. For fish assemblage data from 125 

each site, we calculated the following six metrics: rarefied species richness, exponentiated 126 

Shannon index, Pielou’s Evenness, fish Index of Biotic Integrity (IBI, Karr, Fausch, Angermeier, 127 

Yant, & Schlosser, 1986), proportion of Cyprinids and proportion of intolerant species. Rarefied 128 

species richness was calculated for each sample as the expected species richness in a random 129 

subsample of 1000 individuals. Fish IBI was calculated using the Illinois IBI calculator 130 

(http://dnr.illinois.gov/IBICalculation/NewSampleForm.aspx), a software designed specifically 131 

for the state of Illinois to calculate the integrity scores based on fish species abundance and river 132 

attributes such as stream width, slope and region. We also calculated the relative density of 133 

fishes (catch per unit effort [CPUE]) in each sample as number of fish captured per hour of effort 134 

per 100 m
2
 area. 135 

We assessed two separate components of  � diversity: spatial and temporal  � diversity. 136 

Spatial  � diversity corresponded with the differences in assemblages among all sites during each 137 

sampling period (i.e., one beta per sampling trip), and temporal  � diversity corresponded with 138 

the differences in assemblages among all sampling periods for each site (i.e., one beta per site-139 

season combination). Each of these components of � diversity were calculated using two 140 

measures: First, we calculated � diversity as the multivariate dispersion (MVD) around group 141 

centroids in multivariate ordination space (Anderson, Ellingsen, & McArdle, 2006). In this 142 

method, taxa assemblage abundance data is used to calculate pairwise dissimilarities among 143 

different samples using a dissimilarity index of choice. Here, we used Bray-Curtis dissimilarity 144 

index to calculate the dissimilarity matrix, and used it to calculate the mean distances to group 145 

centroids in multivariate space. To accomplish this, we used the function betadisper in R package 146 
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vegan (version 2.4-6, Oksanen et al., 2018), with the � �
��� correction to adjust for the small-147 

sample bias in the estimation of dispersion (Stier, Geange, Hanson, & Bolker, 2013). Second, we 148 

used the R package betapart to calculate � diversity as the multiple-site community dissimilarity 149 

(���), an extension of the Bray-Curtis pairwise dissimilarity index (Baselga, 2017; Baselga & 150 

Orme, 2012). ��� is considered a better methodological approach when quantifying the overall 151 

dissimilarity among more than two sites (Baselga, 2017).  For both MVD and MS approaches, 152 

we chose Bray-Curtis dissimilarity index because of its common use in ecological literature, 153 

owing to its ideal statistical properties and ability to account for patterns of variations in 154 

abundances of species along ecological gradients. In addition, we visualized the differences in � 155 

diversity of fish or macroinvertebrate assemblages during spring and fall using two-dimensional 156 

non-metric multidimensional scaling (NMDS) ordination plots based on the Bray-Curtis 157 

dissimilarity matrices. Community metrics significantly correlated to the ordination axes were 158 

superimposed on the plot. We also used indicator species analysis (function indval in package 159 

labdsv version 1.8-0; Roberts, 2016) to compute the indicator values of each species within each 160 

group, and to find significant indicator species for each group (Dufrene & Legendre, 1997). This 161 

approach tries to find species that have high specificity and high fidelity. For all analyses based 162 

on MVD, the assemblage data were standardized and transformed to reduce the undue influence 163 

of highly abundant species relative to uncommon species. Specifically, macroinvertebrate 164 

assemblage data were standardized by dividing by the total count for each sample, and fish 165 

community assemblage data were log transformed as suggested by Anderson et al. (2006); for 166 

each dataset, these standardizations minimized the multivariate stress when fitting NMDS. 167 

We compared site- and sample-specific temperature and dissolved oxygen between 168 

seasons using two-sample t-tests. We also compared CPUE of fishes between seasons using a 169 
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generalized least squares model, correcting for the temporal autocorrelation with an 170 

autoregressive (order 1) correlation structure. To test for differences in diversity metrics between 171 

seasons, we used separate exact two-sample Fisher-Pitman permutation tests for each index. 172 

Because these tests do not directly account for the autocorrelated nature of the data, it was 173 

necessary to assess whether the observed changes exceeded the baseline expectations. Thus, we 174 

used a null model approach (Gotelli & Graves, 1996), based on a toroidal shift permutation 175 

scheme. In this scheme, the start time for each taxon in an assemblage is randomized, such that 176 

species abundances vary independently, but within-species temporal-autocorrelation is 177 

preserved. For each toroidal shift permutation, we ran an exact two-sample Fisher-Pitman test as 178 

described above. We ran the permutations 1500 times to construct the null distribution of Z 179 

statistics, and calculated P value as proportion of times when the original Z statistic exceeded the 180 

Z statistics from the null distribution (Manly, 2006). To assess the effect of taxonomic resolution 181 

on the observed trends, we ran the analyses for fishes at both species and family level. 182 

 183 

Results 184 

 Water temperatures during spring and fall samples were not statistically different from 185 

each other (mean spring: 16.6 °C; mean fall: 18.2 °C; t = 1.64; P = 0.11). Macroinvertebrates 186 

from 56 families were collected from Kickapoo Creek from 2010 to 2013. The most abundant 187 

families were Caenidae (Order Ephemeroptera; mean 32.0%), Chironomidae (Order Diptera; 188 

30.1%) and Hydropsychidae (Order Trichoptera; 16.9%) in fall, and Chironomidae (64.0%), 189 

Hydropsychidae (16.2%) and Simuliidae (Order Diptera; 4.1%) in spring. Plecoptera were not 190 

collected during the four year period; therefore, % EPT only includes Ephemeroptera and 191 

Trichoptera. 192 
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Richness and Shannon diversity of macroinvertebrate families were significantly higher 193 

during fall compared to spring (Table 1; Figure 2). Both spatial and temporal � diversities 194 

assessed using the MVD approach were significantly higher during fall compared to spring 195 

(Table 1; Figure 3). In addition, temporal � diversity based on MS dissimilarity was significantly 196 

higher during fall compared to spring, but the corresponding spatial � diversity did not differ 197 

between seasons. NMDS ordination showed that season was structured along axis 1 of the 198 

NMDS and that samples collected during spring were markedly more similar to one another 199 

compositionally than fall samples (Figure 4). Five diversity metrics were significantly correlated 200 

to the NMDS ordination; of these, Hilsonhoff’s Biotic Index and % Chironomidae were higher in 201 

the spring samples, and % EPT taxa was higher in fall samples. A total of 7 macroinvertebrate 202 

families were identified as indicator species for either spring or fall samples (Table 2). Taxa 203 

typically considered to be tolerant of disturbance or pollution, such as Chironomidae and 204 

Simuliidae, were indicative of fall, and taxa typically considered indicative of good stream 205 

health, such as members of Caenidae and Coenagrionidae, were indicative of spring samples 206 

(Table 2). 207 

Within Kickapoo Creek electrofishing samples, 98,938 fish from 11 families (49 species) 208 

were collected, with Cyprinidae the most common family (88.8%), followed by Centrarchidae 209 

(3.8%) and Percidae (2.7%). All of the five most common species were Cyprinids: sand shiner 210 

(Notropis stramineus, 29.1%), spotfin shiner (Cyprinella spiloptera, 17.7%), silverjaw minnow 211 

(Notropis buccatus, 15.4%), bluntnose minnow (Pimephales notatus, 12.7%) and central 212 

stoneroller (Campostoma anomalum, 7.0%). 213 

Compared to spring samples of fishes, fall samples had significantly higher CPUE (F = 214 

33.19, P < 0.001; Figure 5), exponentiated Shannon Index and species richness (Table 1). In 215 
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contrast, there were no seasonal differences in spatial or temporal � diversity indices (Table 1; 216 

Figure 3). The results were similar at both taxonomic resolutions of the fish assemblage, except 217 

for family richness, which was not significantly different between spring and fall samples (Table 218 

1). Similar to macroinvertebrates, season was largely structured along axis 1 for fishes as well 219 

(Figure 4). Of the four diversity metrics that were significantly correlated to the NMDS 220 

ordination, fish IBI was higher in the fall samples, and percent intolerant species was higher in 221 

spring samples (Figure 4). A total of 13 fish species were identified as indicator species for either 222 

spring or fall samples (Table 2). We did not observe any distinct differences in the functional 223 

form or morphology of the indicator species for the spring and fall seasons. However, it should 224 

be noted that species typically associated with smaller streams, such as silverjaw minnow and 225 

central stoneroller, were identified as indicator species for fall but not spring season (Table 2). 226 

 227 

Discussion 228 

Our research showed that seasonal � diversity patterns in Kickapoo Creek are uncoupled 229 

from � diversity patterns, and that these differences are taxa-specific. We also showed that these 230 

patterns are robust to taxonomic resolution (species versus families in fishes). 231 

There were few analogous results between the macroinvertebrate and fish communities 232 

regarding � and � diversity, suggesting different drivers at these two taxonomic/trophic levels. 233 

High instability and stress at the reach and stream levels likely affect macroinvertebrate and fish 234 

communities differently in Kickapoo Creek. Because landscape structures often influence 235 

diversity at population-genetic and community levels similarly in terrestrial, freshwater as well 236 

as marine systems (Chust et al., 2016; Finn et al., 2013; Finn & Poff, 2011; Vellend, 2005), we 237 

suspect that differences may occur at population-genetic levels of macroinvertebrates and fishes 238 
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as well. Seasonal differences in � and � diversity has been shown to be affected greatly by 239 

temperature (Cook et al., 2018; Magurran, Dornelas, Moyes, Gotelli, & McGill, 2015); in 240 

Kickapoo Creek, the observed differences could not be attributed to temperature differences 241 

because spring and fall samples did not differ in water temperature. This suggests that several 242 

factors other than temperature also play a crucial role in seasonal differences in diversity and 243 

need to be studied more. 244 

There is growing consensus that interannual changes in � diversity is fairly low and 245 

stable for freshwater phytoplankton, macroinvertebrates and fishes (Goheen, White, Ernest, & 246 

Brown, 2005; Gotelli et al., 2017; Hillebrand et al., 2018; Magurran et al., 2018), suggesting that 247 

community regulation is a general feature across taxa and ecosystems. However, major 248 

disturbances or natural shifts in environmental conditions may act as ecological filters and cause 249 

a major change in � diversity over time or space (Anderson et al., 2011; J. M. Chase, 2007). 250 

Such severe changes may result from long-term, predictable changes in environment (e.g. global 251 

temperature rise, bleaching of the coral reefs, etc.) or abrupt changes (e.g. oil spill, drought, etc.). 252 

In temperate regions of Midwestern United States, different seasons may present drastically 253 

different environmental conditions. Life history adaptations of local species to such differences 254 

have led local species to exploit different temporal (e.g. intra- or inter-annual differences) and 255 

spatial niches (e.g. headwater streams versus higher-order streams, Chase, Kraft, Smith, Vellend, 256 

& Inouye, 2011; Cook et al., 2018; Vannote, Minshall, Cummins, Sedell, & Cushing, 1980). 257 

Thus, season may directly affect � and � diversities through deterministic or random ecological 258 

filtering (Chase, Kraft, Smith, Vellend, & Inouye, 2011). 259 

Season change seemed to act as a systematic ecological filter for macroinvertebrates in 260 

Kickapoo Creek, such that specific families of macroinvertebrates were affected. Therefore, 261 
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taxa-specific differences in life history strategies may be an important factor in explaining 262 

observed differences. Chironomidae larvae generally emerge as adults during spring and 263 

summer, and thus, may not be present in the stream during fall. On the contrary, Caenis sp. 264 

demonstrate large variations in their life history patterns (e.g. C. luctuosa [Cayrou & Céréghino, 265 

2003]; C. horaria [Menetrey, Oertli, Sartori, Wagner, & Lachavanne, 2008]) with individuals of 266 

these species present in the water throughout the year. This suggests that Ephemeropterans may 267 

fill the niche left open by the absence of Chironomidae during spring. Another possible 268 

explanation may be provided by the homogenizing effect of the massive spawning of 269 

macroinvertebrates during spring (Thorp & Covich, 2009). Stress due to extreme temperature, 270 

desiccation and low foraging opportunities during summer may cause differential mortality 271 

among taxa, and thus, community composition could be highly heterogeneous during fall. The 272 

indicator macroinvertebrate taxa identified by indicator species analysis also reflect seasonal 273 

differences in life cycle, with families such as Coenagrionidae and Calopterigidae, indicative of 274 

spring, occurring as adults during much of summer and fall (Thorp & Covich, 2009). 275 

Ephemeroptera are typically associated with higher-quality conditions. However, 276 

Ephemeroptera species observed in Kickapoo Creek (most importantly Caenis sp. and Baetis sp.) 277 

are relatively tolerant taxa that are commonly found in degraded streams (e.g., Barbour, 278 

Gerritsen, Snyder, & Stribling, 1999; Hilsenhoff, 1987). Thus, the high proportions of 279 

Ephemeroptera, and particularly, Caenis spp., in our samples do not necessarily indicate that 280 

Kickapoo Creek is a pristine and high-quality ecosystem. This also explains why the Biotic 281 

Index was a strong predictor for spring compared to fall, even though (1) EPT taxa were 282 

proportionately more abundant in fall, and (2) Chironomidae, a taxa typically associated with 283 

polluted waters, were proportionately more abundant in spring. 284 
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Observed seasonal differences in fish diversity suggest random sampling effects of 285 

season such that entire sampling locations may be affected by seasons. Unlike 286 

macroinvertebrates, upstream fish movement and migration can be directly hindered by harsh 287 

conditions in the downstream locations. For example, low flow during summer may prevent the 288 

upstream movement of migrating fish towards the upstream sites, and thus, all fish species in the 289 

upstream sites are affected. As a further example from Kickapoo Creek, during summer 2013, a 290 

beaver dam had formed at the downstream end of the site C, thus dramatically increasing the 291 

mean depth, obliterating the riffles, and decreasing the stream flow in the entire site. The fall 292 

2013 sample for site C included a greatly reduced number of minnows (which are most common 293 

in shallow raceway habitats) and darters (which prefer riffles, Smith, 2002). Such dramatic 294 

change in species composition was clear in the NMDS plot as well. It should be noted, however, 295 

that even though season seemed to affect macroinvertebrates deterministically and fishes via 296 

random, reach-specific processes, the actual effect is likely due to a combination of the two 297 

processes. 298 

Our results may also inform the sampling strategies to be employed when assessing the 299 

biodiversity of fishes and macroinvertebrates in Midwestern streams. Significant differences in 300 

alpha diversity of macroinvertebrates and fishes in Kickapoo Creek means that long-term 301 

monitoring projects, often conducted only once a year, need to be conducted during the same 302 

season for valid comparison. The choice of the season may depend on beta diversity differences 303 

between seasons. Lower temporal and spatial � diversity of macroinvertebrates during spring 304 

suggests that sampling during spring would allow assessing true changes in assemblages with the 305 

need to sample few sites. On the contrary, owing to similar � diversity between spring and fall, 306 

choice of season for sampling fishes is not clear. However, NMDS suggested higher overall 307 
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homogeneity of samples during fall, suggesting that samplings should be conducted during fall.  308 

Similar results were also obtained in the Vermillion River, Illinois, where Hastings, Meiners, 309 

Colombo, & Thomas (2016) observed more homogenous composition of fishes during fall 310 

compared to spring. These results suggest that fish sampling during spring should be conducted 311 

in either large reaches or several smaller reaches at multiple occasions (i.e. multiple years). 312 

Furthermore, % intolerant fish species was correlated with the NMDS such that higher 313 

proportion of intolerant species were collected in spring samples. Also, some large-river-314 

associated fishes, such as the longnose gar (Lepisosteus osseus) were only observed in–and 315 

identified as indicator species for–the spring samples. Longnose gar and other large-river 316 

associated-fishes often migrate upstream into the creek from the Embarras River during spring 317 

for spawning (Johnson & Noltie, 1996); some of these species/individuals may remain in the 318 

creek during the fall if deeper habitats are available(Schlosser, 1987). Similar life history 319 

differences may also explain the observed high density of fishes in fall compared to spring 320 

samples. Fall samples likely included young of year fish that were larval stage earlier in the 321 

summer. Winter mortality may also contribute to fewer fish in the spring. Finally, fishes tend to 322 

stay in one general area during warmer periods (Barbour et al., 1999); therefore, the catchability 323 

might have increased during fall samples. 324 

 We have shown that season has a different effect on species richness and turnover of 325 

macroinvertebrates compared to fishes in Kickapoo Creek. We suspect similar patterns exist in 326 

other streams as well because most third- to fifth-order streams in the Midwestern United States 327 

are disturbed and face issues similar to Kickapoo Creek (e.g. siltation, agricultural runoff, 328 

effluent from wastewater treatment plant, etc.). However, stochastic interannual and reach-329 

specific factors also play important role in determining species turnover among 330 
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macroinvertebrates and fishes. Therefore, frequent and rigorous assessment of animals need to be 331 

conducted to understand stream conditions and beta diversity to inform conservation decisions 332 

(Socolar, Gilroy, Kunin, & Edwards, 2016).  333 
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Table 1: P-values associated with randomization tests comparing the observed differences in � 507 

and � diversity of macroinvertebrates and fish communities during spring and fall with a null 508 

distribution generated by a toroidal shift permutation. See text for details. 509 

Taxa � diversity  � diversity 

Shannon Index Richness 
 Spatial        Temporal 

 MVD MS MVD MS 

Macroinvertebrates 0.027 0.048  0.034 0.168 0.029 0.014 

Fish (Species) 0.001 0.006  0.907 0.717 0.482 0.443 

Fish (Family) 0.035 0.061  0.901 0.707 0.536 0.229 

  510 
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Table 2: Indicator species for fishes and macroinvertebrates collected from Kickapoo Creek, 511 

Illinois during spring and fall 2009-2013. 512 

Season Indicator species (taxa) Indicator value 

Macroinvertebrates (Family) 

Fall Chironomidae 0.72 

Fall Simulidae 0.59 

Spring Caenidae 0.95 

Spring Coenagrionidae 0.88 

Spring Calopterygidae 0.83 

Spring Tricorythidae 0.47 

Spring Corydalidae 0.31 

Fishes (Species) 

Fall Johnny darter 0.85 

Fall Longear sunfish 0.84 

Fall Orangethroat darter 0.83 

Fall Central stoneroller 0.81 

Fall Rainbow darter 0.75 

Fall Silverjaw minnow 0.75 

Fall Golden redhorse 0.73 

Fall Redfin shiner 0.7 

Fall Largemouth bass 0.68 

Fall Mosquitofish 0.4 

Spring Golden shiner 0.33 

Spring Dusky darter 0.25 

Spring Longnose gar 0.25 

  513 
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Figure Legends 514 

Figure 1: Sampling locations in Kickapoo Creek southwest of Charleston, Illinois.  515 

 516 

Figure 2: Rarefied taxa richness and exponentiated Shannon Index for macroinvertebrates and 517 

fishes collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text 518 

for details on statistical differences. 519 

 520 

Figure 3: Spatial and temporal � diversity indices based on multiple-site dissimilarity (MS) and 521 

multivariate dispersion (MVD) approaches for macroinvertebrates and fishes collected from 522 

Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on statistical 523 

differences. 524 

 525 

Figure 4: Non-metric Multidimensional Scaling (NMDS) plot of macroinvertebrate (a) and fish 526 

(B) communities sampled from Kickapoo Creek during spring (○) and fall (■) of 2009-2013. 527 

Arrows represent the strength and direction of community metrics that are significantly 528 

correlated to the ordination axes. Labels for each sample denote site and sample year. 529 

 530 

Figure 5: Mean total fish CPUE (catch/(hr * 100 m
2
)) was significantly higher during fall 531 

compared to spring in Kickapoo Creek (2009-2013). 532 
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Figure 1. Sampling locations in Kickapoo Creek southwest of Charleston, Illinois.  
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Figure 2. Rarefied taxa richness and exponentiated Shannon Index for macroinvertebrates and fishes 
collected from Kickapoo Creek during spring and fall of 2009-2013. See table 1 and text for details on 

statistical differences.  
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Spatial and temporal β diversity indices based on multiple-site dissimilarity (MS) and multivariate dispersion 
(MVD) approaches for macroinvertebrates and fishes collected from Kickapoo Creek during spring and fall of 

2009-2013. See table 1 and text for details on statistical differences.  
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Figure 4. Non-metric Multidimensional Scaling (NMDS) plot of macroinvertebrate (a) and fish (B) 
communities sampled from Kickapoo Creek during spring (○) and fall (■) of 2009-2013. Arrows represent 

the strength and direction of community metrics that are significantly correlated to the ordination axes. 
Labels for each sample denote site and sample year.  
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Figure 5. Mean total fish CPUE (catch/(hr * 100 m2)) was significantly higher during fall compared to spring 
in Kickapoo Creek (2009-2013).  
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